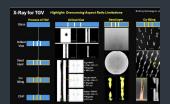


Yamantaka Technology Co., Ltd. Taiwan

Advanced AI-driven Inspection for TGV, TDV, TSV, and Wafer

Technologies


X-Ray Non-Destructive Inspection Solutions for Next-

Generation Semiconductor Packaging

Advanced AI-driven Inspection for TGV, TDV, TSV, and Wafer Technologies

- Through glass vias (TGVs) are vertical electrical connections formed in glass substrates.
- TGVs are utilized in advanced packaging to enable 2.5D/3D integration.
- X-ray inspection is essential for examining TGV defects.

Why Choose Infinity Technology's 3D-AXI for TGV?

- Through Glass Via (TGV) Inspection Advanced 3D X-ray technology reveals via geometry, taper, microbubbles, voids, and incomplete connections in glass interposers.
- Patented Eccentric Scanning Design Enables non-destructive imaging with optimized speed and minimal sample damage.
- **Sub-Micron 3D Imaging** Resolution $< 3 \mu m$, suitable for critical defect detection in semiconductors, AI hardware, PCBs, and automotive electronics
- AI-Enhanced Defect Detection Built-in AI algorithms automatically detect defects, reducing operator workload and human
- Flexible Scan Modes Easy setup for full-board scan, local area scan, and spot scan.

Key Features

- **√** 3D Reconstructed Imaging with <3 μm resolution.
- ✓ Customizable AI Inspection 100% adaptable to customer process flow.
- √ Real-Time Process Monitoring detects defects, voids, and drilling precision deviations instantly.
- ✓ Automatic & Manual Loading suitable for highvolume inline inspection and offline analysis.
- √ User-Friendly Interface intuitive control panel, fast setup, minimal training required.

X-Ray Non-Destructive Inspection System

Specification

	2D X-RAY Inspection	3D X-RAY Inspection
Model Number	CMCT R25A01	CMCT R25A01-1
Mode	In-line, full inspection	Off-line, 3D via-hole reconstruction
Optical Technology	X-RAY	
Panel / Wafer Size	200mm x 200mm (Min); 700mm x 600mm (Max)	
	12" (Max)	
Thickness	0 – 4.8 mm	
Inspection Features	Shape analysis of vias, taper, and hole	Internal via inspection for taper, hole geometry,
	geometry.	microbubbles, voids, and incomplete connections.
Accuracy	X < 3 μm, Y < 3 μm	X < 3 μm, Y < 3 μm, Z < 3 μm
	(@40–100× with variable FOV)	(@40–100× with variable FOV)
Inspection Capability	Fast inspection,	Provides detailed internal inspection of via holes
	shape analysis, unconnected features	to identify microbubbles, voids, and incomplete
		connections.
Dimensions/Weight	L3.5m x W2.1m x H2.2m / 5600 KG	
Power	200-240 VAC · 50/60 Hz · 6.8kW	

Notice on FOV (Field of View)

- Definition: FOV represents the observable area at a given magnification. In X-ray inspection, it directly affects resolution and inspection coverage.
- Variable FOV (40–100×):
 - At higher magnification (100×) → smaller FOV, higher resolution, suitable for fine defect detection (e.g., microbubbles,
 - At lower magnification $(40\times) \rightarrow$ larger FOV, lower resolution, suitable for macro-level inspection (e.g., via distribution, overall geometry).
- Implication:
 - A balance must be made between inspection speed (large FOV) and accuracy (small FOV).
 - For 3D inspection, Z-axis precision (< 3 μm) is highly dependent on the selected FOV setting.

For TGV / TDV / TSV / Wafer

Yamantaka Technology Co., Ltd. Taiwan

Yamantaka Technology specializes in cutting-edge X-Ray inspection systems designed for semiconductor, PCB, and advanced packaging industries. With patented 3D reconstruction algorithms and eccentric scanning designs, our solutions provide submicron level accuracy, ensuring quality, reliability, and yield improvement in highend manufacturing processes.

Product Highlights

- ✓ Through Glass Via (TGV) inspection with advanced 3D X-ray technology.
- ✓ Patented eccentric scanning design for optimized non-destructive imaging.

SERVICES AVAILABLE

Technical Support Installation and Setup Maintenance **Application Support** Hardware Support **Guaranteed Warranty**

No 118, Neiding 20th Street Zhongli, Taoyuan 32060, Taiwan Phone 886-3-4555718 Fax 886-3-4556518 Email sales@dlf.com.tw

Scan the QR code for more information

Yamantaka Technology Co., Ltd. Taiwan